查找:                      转第 显示法宝之窗 隐藏相关资料 下载下载 收藏收藏 打印打印 转发转发 小字 小字 大字 大字
【期刊名称】 《刑事技术》
核磁共振技术在污水等环境样品分析中的应用
【英文标题】 Nuclear Magnetic Resonance for Sewage Analysis
【作者】 李彭高利生【作者单位】 公安部物证鉴定中心公安部物证鉴定中心
【分类】 司法鉴定学【中文关键词】 核磁共振;环境样品;污水
【英文关键词】 NMR (nuclear magnetic resonance); environmental samples; sewage/polluted water
【文章编码】 1008-3650(2019)01-0066-08【文献标识码】 A
【期刊年份】 2019年【期号】 1
【页码】 66
【摘要】 随着城市化的加剧和化肥、农药使用量的增加,作为生命之源的水已经受到了严重的污染。水污染降低了水体的使用功能,加剧了水资源短缺,水污染严重破坏生态环境、影响人类生存,因此,对污水等的有害成分分析很有必要。核磁共振技术可以在简单预处理或不做任何预处理的状态下获得不同物理状态分析物的分子层次的信息,这非常适合环境研究。本文概述了污水处理的简要流程,核磁共振技术的应用现状,重点论述了核磁共振技术在污水成分检测分析中的理论依据和应用原理,并以实例说明了应用核磁共振技术检测各类污水成分的效果。最后展望了核磁共振技术将来的发展方向,并建议加强应用技术的理论向实践推广和加快新仪器的研发工作,为改善环境质量、降低检测成本提供新的技术手段。
【英文摘要】 Water pollution is increasingly becoming a serious problem with the development of industry, the augment of population, the over-rapid urbanization and the uncontrolled application of chemical fertilizers and pesticides. Water pollution is usually caused by various pollutant substances discharged into the water. Commonly, there are four kinds of pollution sources. First, the waste water and liquid from industrial production, ordinarily containing raw/finished materials unavailable, intermediate products, by-products and pollutants engendered. Second, the drainage collected by the sewer pipes, mostly coming from various domestic sewage and industrial effluents. Third, the polluting liquid substances out from agricultural activities. Fourth, the solid and semi-solid waste materials from people’s lives and industrial process. Water pollution is malign as it has already reduced the utilization of water, exacerbated the shortage of water resources, seriously damaged the ecological environment and affected human health. Therefore, it is necessary to analyze the harmful components in polluted water/sewage. Nuclear magnetic resonance (NMR) boasts of simple sample preparation, small destructivity to the analytes and complete component resolution so that it has got a great attention and been widely applied by most researchers among physics, chemistry, biology, medicine, food and other sciences. NMR can obtain information at the molecular level of different physical states with simple or even without sample pretreatment, thus excelling in environmental research. This paper emphasizes on the theoretical basis and application principle of NMR technique for analyzing the components in polluted water/sewage, illustrates the effect of NMR on detecting various components from sewage, together with the brief introduction to the sewage disposal process and NMR application status. Finally, a prospect was made on the progress of NMR technique, suggesting that the theory ought to be strengthened for applying NMR, the relevant new instruments should be researched and developed and more importantly popularized and accelerated into practical use.
【全文】法宝引证码CLI.A.1253076    
  
  人口的快速增长和环境制约使得人类对环境资源的需求与日俱增,推进可持续发展型经济变得尤为重要,而且与人类活动密切相关的水资源正急剧减少,因此要对水资源进行快速恢复以备后续再利用。早在公元前4000年初的古代文明中,人类就发明了第一种水处理方法,以改善水的味道和气味。公元前1500年左右,埃及人用明矾将悬浮颗粒凝结,并将其清除以澄清水质。在1930~1940年间,考古人员发现了一处存在于十六世纪的巴基斯坦遗址,当地居民将房屋的厕所与印度河的支流河道连在一起,这被认为是人类首个排水系统而且可能具有污水处理功能。现在我们可以对家庭和工业污水进行处理以防止疾病和其他有害物的滋生、避免地下水污染、保护水生生物和水资源{1-3}。如图1所示,城市的水循环系统是一个从污水生成到最终处理的复杂循环。然而在一些立法或执法不严的国家,污水的最终流向仍然是个问题,并且对环境造成有害影响{4-6}。
  (图略)
  图1某城市典型的水循环系统
  Fig.1 Scheme of water cycle for urban supply
  现在人们已经意识到现有自然资源无法满足经济系统发展的需要,而且人类暂时还没有处理和消化污染物的办法,因此人们对环境保护越来越重视。目前,污水处理和土壤净化是保护环境和卫生最重要的举措之一{7-12}。但是现在的污水处理技术能力还无法做到防止污染面扩大、检测污水处理厂故障、查明非法污染来源和开发新的污水处理方法等诸多问题。因此,针对现有技术开发新的分析工具或新技术将有助于分析环境样品。
  本文将总结在污水处理排入和排出研究中应用NMR和LC-NMR的几个研究成果,并对相关文献进行综述。
  1样品采集、制备和保存
  制定取样计划和样本保存是进行任何固体或液体样本研究的最重要的步骤之一。这个步骤需要并值得花费时间,而且要在开始收集数据前做好计划,因为采样过程中任何问题都会破坏收集的样本数据。在样本收集阶段,要考虑到收集区内的分水岭、水道,河流,湖泊,水库,处理厂和水流系统等诸多差异,以求所取样本可以代表整个区域。取样地点的选择要基于水、污水异质性和非点源污染等相关知识,例如:如果目标是要取来自河流的水,那就不宜在靠近河堤、河道和垃圾处理厂的位置取样,除非这些点本身就是取样目标。因此所取样本必须能够充分代表区域内污水的各种特征。此外,对于污泥和土壤的收集,取样范围必须划分准确,取样必须有代表性,避免草率收集和选择不具备代表性的区域。在进行样品制备的同时也要考虑NMR设备整体的场强和灵敏度以获得高质量的谱图信息,NMR探头灵敏度可以通过测量在氘代氯仿(CDCl3)中的0.1%乙基苯溶液(浓度为14 mmol/L)的信噪比,用以下公式计算:
  Ms=(信号/噪音)/目标物分子量(1)
  质量敏感度(Ms)是探头性能的一项指标,例如:标准的Bruker 5 mm探头的质量敏感系数为1。通常,在500 MHz的频率下,浓度为0.15 mg/mL便可以获得良好的核磁共振氢谱,而在用于13C检测的实验中,需要浓度达到3.85 mg/mL才能获得良好的碳谱{13}。目前,低温探头通过冷却射频检测线圈和前置放大器来降低背景噪声,因此探头的低温冷却可以产生至少4倍的灵敏度增益{14-15}。溶液中浓度更高的分析物可以缩短实验期,然而过高浓度可能导致溶液粘性很高,从而使信号变宽,因此寻找最佳浓度对于优化实验参数是至关重要的。此外,样品必须充分溶于氘代溶剂,并且必须不含颗粒,因为固体的存在会破坏局部磁场的均匀性,导致信号变宽,因此必须将样品进行过滤,除去全部固体颗粒才能获得最佳实验结果。
  核磁共振实验需要很长时间才能完成,因此应向含有微生物或细菌的污水样品中加入抑菌剂。叠氮化钠(0.02%w/v)是最常见的抑菌剂,如果出现分析物和叠氮化物相互作用的情况,还可以加入氯霉素或其他抗生素{16-17}。另外,使用缓冲溶液可以使系统保持长时间的稳定和离子电荷的平衡,在各种缓冲溶液中,氘代磷酸盐(10~50mmol/L)是最适合核磁共振实验的{18-19}。采取如上这些预防措施之后,将制备的样品放入核磁管中进行谱图采集。
  对于固体样品的核磁共振实验,需要将样品塞入4 mm的小型氧化锆转子中。首先将样品拌匀并用研钵粉碎,将转子放在特殊的漏斗形容器中,将研磨好的粉末倒入漏斗内。在每次加入粉末后将其压实,以确保转子被填满,同时为核磁管留出一定空间确保可以插入盖子。如果样品量少,不能充分填满转子时,可以使用二氧化硅、明矾或硫酸钙等无机物将转子填满。样品均匀地填充满转子,可以避免实验运行时损坏转子,以至于损坏探头。此外,多个样本参数设置对于实现良好的信噪比非常重要。例如良好的调谐,锁定磁场频率的设定(锁场),磁场均匀性的优化(匀场),接收器增益调整,脉冲长度校准以及核自旋纵向弛豫时间(T1)平均值的确定等。环境样本NMR分析测试的通常是小样本,上述参数的优化设定就更为重要{20}。
  2样品表征
  2.1表征原理
  一维NMR谱图通常用于分析样品中的氢原子或碳原子,为确定其化学结构提供重要信息。实验中观察到原子核的共振频率ν0取决于分子环境(周围电子的性质)以及磁旋比γ和外加磁场,氢原子或碳原子的核磁共振谱是由邻近原子的电子电负性决定的。氢谱中另外一个重要特征是原子核与不同磁环境相互作用的方式。多维核磁共振实验的综合分析使NMR成为判定纯化合物和固体、液体、凝胶或气体混合物最直接通用的工具,这类信息可以判断分子结构中含有何种原子或官能团,因此很多研究文章报道了通过氢谱分析污泥、污泥提取物和污水中的官能团和目标物质{21-25}。
  环境样品的性质不尽相同,例如土壤中固态原子的硬度较高,导致相邻的13C原子之间出现强偶极耦合,因此出现了宽谱峰,可以通过样品以相对于外磁场以特定倾角(magic angle, 54.74°)作高速旋转实现{26-28},而且由于使用交叉极化(cross-polarization, CP)机制,一些原子核的低丰度同位素(例如13C)可以忽略不计。CP技术使用偶极-偶极相互作用来确定大量的(1H)和少量的(13C)之间的能隙,以实现磁化转移,从而有助于观察稀薄自旋{29}。表1列举了在污水、污泥和流出物样品中发现的一些典型13C化学位移。
  为了验证化合物分子量和NMR 谱图信号之间的相关性是否受到连接HPLC 仪器单元的影响,可以将质谱仪单元(MS)接入系统。图2 是理想状态和完全联用的LC-UV/MS-SPE 自动采样存储(automatic sampling storage,ASS)-NMR系统和ASS以及低温探头在离线模式下的运行图。
  表1环境样品中一些典型物质的13C化学位移
  Table 1 Typical 13C shift for chemical segments from sludge and waste water

┌─────────────────┬───────────┬───────┐
│残留类型             │化学位移/mg/L     │参考文献   │
├─────────────────┼───────────┼───────┤
│生物大分子、脂类、蛋白质中的烷烃链│0.0~55.0       │{30-34}    │
├─────────────────┼───────────┼───────┤
│脂肪酸长链中的亚甲基基团     │20.0~32.0       │[30, 33, 35] │
├─────────────────┼───────────┼───────┤
│软木脂链中的亚甲基基团      │约30.0和33.0     │{36}     │
├─────────────────┼───────────┼───────┤
│腐殖酸支链脂肪族亚甲基基团    │约32.5        │{33-35}    │
├─────────────────┼───────────┼───────┤
│木质素、半纤维素、软木脂中的甲氧基│45.0~72.0       │[32, 36]   │
│基团               │           │       │
├─────────────────┼───────────┼───────┤
│木质素中的甲氧基基团       │约56.0        │[37, 39]   │
├─────────────────┼───────────┼───────┤
│甾醇中的甲氧基基团        │41.0~60.0       │{38}     │
├─────────────────┼───────────┼───────┤
│氨基酸和多肽中的碳        │60.0~75.0       │[30, 35]   │
├─────────────────┼───────────┼───────┤
│碳水化合物、糖脂、木质素和木栓质中│50.0~110.0      │[31, 33, 35-37│
│及有氧、氮原子取代的脂肪族碳   │           │, 39]     │
├─────────────────┼───────────┼───────┤
│碳水化合物链端异构的碳      │100.0~115.0      │[34, 35]   │
├─────────────────┼───────────┼───────┤
│纤维素              │约65.0、73.0、75.0、83│[38, 39]   │
│                 │.0、88.0和105.0    │       │
├─────────────────┼───────────┼───────┤
│多糖、纤维素、木聚糖、木质素和多酚│90.0~118.0      │[30, 32, 35] │
│链端异构的碳           │           │       │
├─────────────────┼───────────┼───────┤
│甾醇中的碳            │106.0~150.0      │{38}     │
├─────────────────┼───────────┼───────┤
│含双键的碳,未被取代的芳香环上的碳│110.0~130.0      │{31}     │
├─────────────────┼───────────┼───────┤
│苯环的碳,芳醚和n-取代的芳香族化合│约151.9        │{35}     │
│物中的碳             │           │       │
├─────────────────┼───────────┼───────┤
│芳香族的取代碳,有氮或氧原子取代的│105.0~160.0      │[30-32, 35-37]│
│木质素,酚类、芳香醚、芳香胺的碳 │           │       │
├─────────────────┼───


  ······

法宝用户,请登录后查看全部内容。
还不是用户?点击单篇购买;单位用户可在线填写“申请试用表”申请试用或直接致电400-810-8266成为法宝付费用户。
【注释】                                                                                                     
【参考文献】 {1}MORERA S, COROMINAS L, RIGOLA M, et al. Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts[J]. Water Research, 2017:614-623.
  {2}KIM U J, OH J K, KANNAN K. Occurrence, removal and envi-ronmental emission of organophosphate flame retardants/plasti-cizers in a wastewater treatment plant in New York State, USA[J]. Environmental Science & Technology, 2017, 51(14):78727880.
  {3}HARDER R, PETERS G M, ASHBOLT N J, et al. Using quan-titative microbial risk assessment and life cycle assessment to assess management options in urban water and sanitation infrastructures: Opportunities and unresolved issues[J]. Microbial Risk Analysis, 2017, 5:71-77.
  {4}SUN S, SUN G, COHEN E, et al. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data[J]. Hydrology & Earth System Sciences, 2016, 20(12):935–952.
  {5}STEPHAN A, STEPHAN L. Life cycle water, energy and cost analysis of multiple water harvesting and management measures for apartment buildings in a Mediterranean climate[J]. Sustainable Cities & Society, 2017, 32:584-603.
  {6}BAMAGA O A, ALSHARIF S F, BALKHAIR K S, et al. Im-provement of urban water cycle and mitigation of groundwater table rise through advanced membrane desalination of shallow urban brackish groundwater of Jeddah basin[J]. Desalination & Water Treatment, 2016, 57(1):124-135.
  {7}VARSHNEY S, JAIN P, ARORA J K, et al. Process development for the removal of toxic metals by functionalized wood pulp: kinetic, thermodynamic, and computational modeling approach[J]. Clean Technologies & Environmental Policy, 2016, 18(8):2613-2623.
  {8}ANJUM M, OVES M, KUMAR R, et al. Fabrication of ZnOZnS@polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater[J]. International Biodeterioration & Biodegradation, 2017, 119:66-77.
  {9}KHAN Z, REHMAN A, HUSSAIN S Z. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater[J]. Chemosphere, 2016, 159:32-43.
  {10}WAIMAN C V, DELL’ERBA I E, CHESTA C A. Hybrid films based on a bridged silsesquioxane doped with goethite and montmorillonite nanoparticles as sorbents of wastewater contaminants[J]. Journal of Nanomaterials, 2016(3/4):40-48.
  {11}ZHAO D, YU Y, CHEN J P. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for de-contamination of arsenic: Material design and optimization, study of mechanisms, and application prospects[J]. Chemosphere, 2016, 155:630-639.
  {12}BORGES M E, SIERRA M, ESPARZA P. Solar photocatalysis at semi-pilot scale: wastewater decontamination in a packedbed photocatalytic reactor system with a visible-solar-lightdriven photocatalyst[J]. Clean Technologies & Environmental Policy, 2017, 19(4):1239-1245.
  {13}CLENDINEN C S, LEEMCMULLEN B, WILLIAMS C M, et al.13C NMR metabolomics: applications at natural abundance [J]. Analytical Chemistry, 2014, 86(18):9242-9250.
  {14}WILLIAMSON R T, BUEVICH A V, MARTIN G E. Using LR-HSQMBC to observe long-range 1H-15N correlations[J].Tetrahedron Letters, 2014, 55(22):3365-3366.
  {15}MARTIN G E, BLINOV K A, WILLIAMSON R T. HMBC1, n-ADEQUATE spectra calculated from HMBC and 1, nADEQUATE spectra[J]. Magnetic Resonance in Chemistry, 2013, 51(5):299-307.
  {16}TAMM I, HEIN?M?KI J, LAIDM?E I, et al. Development of suberin fatty acids and chloramphenicol-loaded antimicrobial electrospun nanofibrous mats intended for wound therapy[J]. Journal of Pharmaceutical Sciences, 2016, 105(3):12391247.
  {17}KOSTOPOULOU O N, MAGOULAS G E, PAPADOPOU-LOS G E, et al. Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells[J]. Plos One, 2015, 10(8):e0134526.
  {18}CHRISTOF ACHTNICH, ERROL FERNANDES, JEAN-MARC BOLLAG, et al. Covalent binding of reduced metabolites of [15N3]TNT to soil organic matter during a bioremediation process analyzed by 15N NMR spectroscopy[J].Environmental Science & Technology, 1999, 33(24):B37-B45.
  {19}SOUZA F P D. Investigation of the interaction between cou-marins and its derivatives with human serum albumin: STDNMR, fluorescence and docking molecular studies [J]. International Journal of Sciences, 2016, 5(2):1-11.
  {20}SIMPSON A J, MCNALLY D J, SIMPSON M J. NMR spec-troscopy in environmental research: from molecular interactions to global processes[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 58(3-4):97-175.
  {21}FENG L, ZHENG H, WANG Y, et al. Ultrasonic-template technology inducing and regulating cationic microblocks in CPAM: characterization, mechanism and sludge flocculation performance[J]. RSC Advances, 2017, 7(38):23444-23456.
  {22}ANNAHEIM K E, DOOLETTE A L, SMERNIK R J, et al.Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions[J]. Geoderma, 2015, 257-258:6777.
  {23}NGUYEN H T, KRISTIANSEN R, VESTERGAARD M, et al. Intracellular accumulation of glycine in polyphosphateaccumulating organisms in activated sludge, a novel storage mechanism under dynamic anaerobic-aerobic conditions[J].Applied & Environmental Microbiology, 2015, 81(14):48094818.
  {24}ABDULLAH R, CHE F I, WAN R K, et al. Application of raw and composted Recycled Paper Mill Sludge on the growth of Khaya senegalensis and their effects on soil nutrients and heavy metals[J]. International Journal of Agriculture & Biology, 2015, 17(7):3736-3739.
  {25}SHADI L, KARIMI M, ENTEZAMI A A, et al. A facile syn-thesis of polyaniline/polyethylene glycol/polyaniline terpolymers: preparation of electrospun conducting nanofibers by blending of the terpolymers with polycaprolactone[J]. Polymer Bulletin, 2013, 70(12):3529-3545.
  {26}HABIB H A, HOFFMANN A, H?PPE H A, et al. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d10 metal-organic frameworks constructed with the 1, 2-Bis(1, 2, 4-triazol-4-yl)ethane ligand[J]. Inorganic Chemistry, 2009, 48(5):2166-2180.
  {27}PAULI J, BALDUS M, VAN R B, et al. Backbone and sidechain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla [J]. Chembiochem, 2015, 2(4):272-281.
  {28}CHAN E C, KOH P K, MAL M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS)[J]. Journal of Proteome Research, 2009, 8(1):352-361.
  {29}KOROLOFF S N, NEVZOROV A A. Optimization of crosspolarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles[J]. Journal of Magnetic Resonance, 2015, 256:14-22.
  {30}NAVALON S, ALVARO M, GARCIA H. Analysis of organic compounds in an urban wastewater treatment plant effluent[J]. Environmental Technology, 2011, 32(3):295-306.
  {31}AMIR S, JOURAIPHY A, MEDDICH A, et al. Structural study of humic acids during composting of activated sludgegreen waste: elemental analysis, FTIR and 13C NMR[J]. Journal of Hazardous Materials, 2010, 177(1):524-529.
  {32}PITERINA A V, BARLETT J, PEMBROKE J T. C-NMR assessment of the pattern of organic matter transformation during domestic wastewater treatment by autothermal aerobic digestion (ATAD)[J]. International Journal of Environmental Research & Public Health, 2009, 6(8):2288-2306.
  {33}HAJJOUJI H E, MERLINA G, PINELLI E, et al.13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content[J]. Journal of Hazardous Materials, 2008, 154(1):927-932.
  {34}MOSSE K P, PATTI A F, SMERNIK R J, et al. Physicochemi-cal and microbiological effects of long- and short-term winery wastewater application to soils[J]. Journal of Hazardous Materials, 2012, 201(1):219-228.
  {35}EL H H, BAILLY J R, WINTERTON P, et al. Chemical and spectroscopic analysis of olive mill waste water during a biological treatment[J]. Bioresour Technol, 2008, 99(11):49584965.
  {36}ISABEL V, NúRIA F, FRANCO C, et al. Copper(II) and nickel(II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study[J]. Polyhedron, 2002, 21(1415):1363-1367.
  {37}LEWIS R, LEEUWEN J A V, SMERNIK R J, et al. Changes in the organic character of post-coagulated Pinus radiata, sulfite pulp mill wastewater under aerated stabilization basin treatment-A laboratory scale study[J]. Chemical Engineering Journal, 2011, 175(22):160-168.
  {38}GARCíA M T, CAMPOS E, RIBOSA I, et al. Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis[J]. Chemosphere, 2005, 60(11):16361643.
  {39}MARCHE T, SCHNITZER M, DINEL H, et al. Chemical changes during composting of a paper mill sludge–hardwood sawdust mixture[J]. Geoderma, 2003, 116(3):345-356.
  {40}SURGET G, LANN K L, DELEBECQ G, et al. Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France[) J]. Journal of Applied Phycology, 2017:1-16.
  {41}CHEN H, HUANG W, LIU C, et al. Characteristics and origin of high porosity in nanoporous sandy conglomerates—a case from Shahezi formation of Xujiaweizifault depression[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(10):61396148.
  {42}SHEEBA M M, PREETHI S, NIJAMUDHEEN A, et al. Halfsandwich Ru(η6-C6H6) complexes with chiral aroylthioureas for enhanced asymmetric transfer hydrogenation of ketones – experimental and theoretical studies[J]. Catalysis Science & Technology, 2015, 5(10):4790-4799.
  {43}TRELLU C, PéCHAUD Y, OTURAN N, et al. Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling[J]. Applied Catalysis B Environmental, 2016, 194:32-41.
  {44}HUANG S, WANG Y, MA T, et al. Fluorescence spectroscopy reveals accompanying occurrence of ammonium with fulvic acid-like organic matter in a fluvio-lacustrine aquifer of Jianhan Plain[J]. Environmental Science & Pollution Research, 2016, 23(9):8508-8517.
  {45}KONGSONG P, SIKONG L, NIYOMWAS S, et al. Enhanced photocatalytic degradation of fulvic acid using N–Doped SnO2/TiO2 thin film coated glass fibers under UV and Solar light ir-radiation for drinking water purification[J]. Applied Mechanics & Materials, 2016, 835:359-365.
  {46}WANG C, JIANG H L, XU H, et al. Variation of physicochemical properties of drinking water treatment residuals and Phoslock? induced by fulvic acid adsorption: Implication for lake restoration.[J]. Environmental Science & Pollution Research, 2016, 23(1):351-365.
  {47}YANAGI Y, SHINDO H. Assessment of long-term compost application on physical, chemical, and biological properties, as well as fertility, of soil in a field subjected to double cropping[J]. Agricultural Sciences, 2016, 7(1):30-43.
  {48}JOURAIPHY A, AMIR S, WINTERTON P, et al. Structural study of the fulvic fraction during composting of activated sludge–plant matter: Elemental analysis, FTIR and 13C NMR[J].Bioresource Technology, 2008, 99(5):1066-1072.
  {49}SCHMIDT S, PIECHOTTA C, GODEJOHANN M, et al.Characterisation of commercially available linear alkylbenzenesulfonates by LC-SPE-NMR/MS (liquid chromatography-solid phase extraction-nuclear magnetic resonance spectroscopy-mass spectroscopy)[J]. Talanta, 2010, 82(1):143150.
  {50}BACILIO M, MORENO M, BASHAN Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri, in a salt-tolerant and a salt-susceptible pepper[J]. Applied Soil Ecology, 2016, 107:394-404.
  {51}HUI X, JIAO R, XIAO F, et al. Enhanced removal for humicacid (HA) and coagulation process using carbon nanotubes (CNTs)/polyalumium chloride (PACl) composites coagulants[J]. Colloids & Surfaces A Physicochemical& Engineering Aspects, 2016, 490(2):189-199.
  {52}ALMENDROS G, TINOCO P, ROSA J M D L, et al. Selective effects of forest fires on the structural domains of soil humic acids as shown by dipolar dephasing 13C NMR and graphicalstatistical analysis of pyrolysis compounds[J]. Journal of Soils & Sediments, 2016:1-11.
  {53}BARTOSZEK M, POLAK J, SU?KOWSKI W W. NMR study of the humification process during sewage sludge treatment [J]. Chemosphere, 2008, 73(9):1465-1470.
  {54}GODEJOHANN M, BERSET J D, MUFF D. Non-targeted analysis of wastewater treatment plant effluents by high performance liquid chromatography-time slice-solid phase extraction-nuclear magnetic resonance/time-of-flightmass spectrometry[J]. Journal of Chromatography A, 2011, 1218(51):9202-9209.
  {55}SCHEURER M, STORCK F R, GRAF C, et al. Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment[J]. Journal of Environmental Monitoring, 2011, 13(4):966-973.
  {56}MICHEL A, BRAUCH H J, WORCH E, et al. Development of a liquid chromatography tandem mass spectrometry method for trace analysis of trisiloxane surfactants in the aqueous environment: an alternative strategy for quantification of eth-oxylated surfactants[J]. Journal of Chromatography A, 2012, 1245(13):46-54.
  {57}SCHEURER M, GODEJOHANN M, WICK A, et al. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame[J]. Environmental Science & Pollution Research, 2012, 19(4):1107-1118.
  {58}PREISS A, BERGER-PREISS E, ELEND M, et al. Unusual polar metabolites in the groundwater of a contaminated waste site indicate a new pathway of mononitrotoluene transformation[J]. Chemosphere, 2011, 84(11):1650-1657.
  {59}PREISS A, BERGER-PREISS E, ELEND M, et al. A new analytical approach for the comprehensive characterization of polar xenobiotic organic compounds downgradient of old municipal solid waste (MSW) landfills[J]. Analytical & Bioanalytical Chemistry, 2012, 403(9):2553-2561.
  {60}DANIELI C, JUSSARA K P, KEITEDA S N, et al. Charac-terization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water[J]. Ecotoxicology and Environmental Safety, 2017, 136:62-69.
  {61}LüBBERT C, BAARS C, DAYAKAR A, et al. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens[J]. Infection, 2017, 45(4):479-491.
  {62}SIMONE L, ALEX K, HELGA H, et al. Differential effect of newly isolated phages belonging to PB1-Like, phiKZ-Like and LUZ24-Like viruses against multi-drug resistant pseudomonas aeruginosa under varying growth conditions[J]. Viruses, 2017, 9(11):315-333.
  {63}PINTADO-HERRERA M G, WANG C, LU J, et al. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China[J]. Journal of Hazardous Materials, 2016, 323(A):128-138.
  {64}GAO T T, DU P, XU Z Q, et al. Optimization and validation of the analytical method to detect common illicit drugs in wastewater[J]. Environmental Science, 2017, 38(1):201-211.
  {65}IRIA G M, KEVIN V T, MALCOLM J R. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid–liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry [J]. Drug Testing and Analysis, 2017, DOI:10.1002/dta.2199.
  {66}FERNANDO F S, GUSTAVO B S, RAFAEL S F, et al. Illicit drugs, metabolites and adulterants in wastewater: monitoring community drug abuse in the brazilian federal district during the 2014 soccer world cup[J]. Journal of the Brazilian Chemical Society, 2017, 28(11):2146-2154.
©北大法宝:(www.pkulaw.cn)专业提供法律信息、法学知识和法律软件领域各类解决方案。北大法宝为您提供丰富的参考资料,正式引用法规条文时请与标准文本核对
欢迎查看所有产品和服务。法宝快讯:如何快速找到您需要的检索结果?    法宝V5有何新特色?
本篇【法宝引证码CLI.A.1253076      关注法宝动态: